Quantum random walks on congested lattices and the effect of dephasing

نویسندگان

  • Keith R. Motes
  • Alexei Gilchrist
  • Peter P. Rohde
چکیده

We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker's direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of quantum walks with negligible decoherence in waveguide lattices.

Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentia...

متن کامل

h . PR ] 1 5 Ja n 20 02 On the physical relevance of random walks : an example of random walks on a randomly oriented lattice ∗

Random walks on general graphs play an important role in the understanding of the general theory of stochastic processes. Beyond their fundamental interest in probability theory, they arise also as simple models of physical systems. A brief survey of the physical relevance of the notion of random walk on both undirected and directed graphs is given followed by the exposition of some recent resu...

متن کامل

Open Quantum Random Walks

A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogue of classical Markov chains. We explore the “quantum trajectory” point of view on these quantum random walks, that is, we show that measuring the position of the particle after each times...

متن کامل

Strongly correlated quantum walks in optical lattices.

Full control over the dynamics of interacting, indistinguishable quantum particles is an important prerequisite for the experimental study of strongly correlated quantum matter and the implementation of high-fidelity quantum information processing. We demonstrate such control over the quantum walk-the quantum mechanical analog of the classical random walk-in the regime where dynamics are domina...

متن کامل

The Role of Dephasing in the Assessment of DMRI through Langevin Equation Approach

Introduction: Diffusion Weighted Magnetic Resonance Imaging (DWMRI) provides visual contrast, depends on Brownian motion of water molecules. The diffusive behavior of water in cells alters in many disease states. Dephasing is a factor of magnetic field inhomogeneity, heterogeneity of tissue and etc., which is associated with the signal amplitude. In a series of DWI acquisition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016